) %g KELKLOD

DIGITAL LOGIC DESIGN
VHDL Coding for FPGAs
Unit 3

v'BEHAVIORAL DESCRIPTION

= Asynchronous processes (decoder, mux,
encoder, etc): if-else, case, for-loop.

= Arithmetic expressions inside asynchronous
processes.

OAKLAND

. UNIVERSITY.
Daniel Llamocca

v BEHAVIORAL DESCRIPTION -
(OR SEQUENTIAL)

= In this design style, the circuit is described via a series of
statements (also called sequential statements) that are
executed one after other; here the order is very important.
This feature is advantageous when it comes to implement
sequential circuits. The sequential statements must be
within a block of VHDL code called ‘process.

= The sequential code suits the description of sequential circuits
very well. However, we can also describe combinatorial
circuits with sequential statements.

= Here we will use the sequential description style to implement
combinatorial circuits. In this instance, the block of VHDL code

(' process’) is called asynchronous process. OAKLAND
Daniel Llamocca UNIVERSITY.

- ASYNCHRONOUS PROCESSES & RECRLAb

(Implementation of combinatorial circuits with sequential ‘statements)

Below we show the syntax of a sequential description. Note that the
‘process’ statement denotes the sequential block.

entity example 1is
port (...
)

end example;

architecture behav of example 1is
begin
process Q%ignal_l, signal 2, ..;»

Beginning == haqgin
of process block g -~ \

Sequential -
- Sensitivy list
Statements (all the signals used
inside the process)
End of
process block end process; OAKLAND

Daniel Llamocca end behav; UNIVERSITY.

= SEQUENTIAL STATEMENTS:

= JF Statement: Simple Conditional

= Example: AND gate. The sensitivity list is made of ‘a’ and ‘b’. We
can use any other gate: OR, NOR, NAND, XOR, XNOR.

= Tt is a good coding practice to include all the signals used inside
the process in the sensitivity list.

= Xilinx Synthesizer: DO NOT omit any signal in the sensitivity list,
otherwise the Behavioral Simulation (iSIM) will be incorrect. This
is usually not a problem for other Synthesizers.

library g ' architecture behav of my and is
use all; i begin
. process (a,b)
entity my and is i begin
port (a, b: in P if (a = "'1') and (b = 'l') then
f: out)y; f <= "'1";
end my and; i else
| f <= '0" ;
a : end if;
g__ >___f . end process;
| Y OAKLAND
UNIVERSITY.

Daniel Llamocca

= IF Statement:
= Example: 2-to-1 Multiplexor:
Three different coding styles:

library 2

use all;

entity my mux2l is

port (a, b, s: in ;
y: out)

end my mux2l;

architecture st of
begin

my mux2l is

y <= (not(s) and

architecture st of
begin
with s select
y <= a when
b when

my mux2l is

] 0) ,

others;
end st;

Daniel Llamocca

a) or (s and b);

y = sa + sb

. architecture st of my mux2l is

-

. begin
: process (a,b,s)
' begin
| if s = '0' then
y <= a;
else
y <= b;
end if;
_ end process;
. end st;
OAKLAND
UNIVERSITY.

= IF Statement: % RECRLab
= Example: 4-to-1 Multiplexor TgpEts Cor

Two different styles: a \
— 0
library ; %_1
use all; . [
—12
entity my mux4l is d |
= _ 3
port (a,b,c,d: in o
s: in (1 downto 0); 2
y: out) ; s

end my_mux41;

architecture st of my mux4l is jarchitecture st of my mux4l is

begin . begin
with s select E process (a,b,c,d,s)
y <= a when "00", ' begin

b when "01", | if s = "00" then y <= a;
c when "10", ; elsif s = "01" then y <= b;
d when "11", i elsif s = "10" then y <= c;
'-' when others; E else y <= d;

end st; g end if;

end process;
end st; QRN

Daniel Llamocca

= JF Statement

= Example:
4-to-2 priority encoder

entity my prienc is

library 5
use

w3 . port (w: in (3 downto 0) ;
—> _y) y: out (1 downto 0);
"2, PRIORITY | y0 z: out) ;
wl ,| ENCODER - end my prienc;
wo |z
architecture bhv of my prienc is
W3 Wz Wi Wo|lYq Yo Z begin
0 00 0Jo 0 0 process (w)
begin
1T x x x| 1 1 1 if w(3) = '1l' then y <= "11";
elsif w(2) = 'l' then y <= "10;
0 1 x x| 1 0 1 elsif w(l) = 'l' then y <= "01";
0 0 1 x|0 1 1 else y <= "00";
end if;

vuU e v if w = "0000" then

z <= '0"';

» The priority level is implicit else

by having w(3) in the first z <= '1';
‘if, and w(2) in the second enzngr;:;ss
if, and so on. - O&%ﬁ%}}@

Daniel Llamocca

= JF Statement

= Example: 4-to-2
priority encoder
(another style)

Process: Statements are
‘executed (the way the
synthesizer reads it) one
after the other.

= The first statement
assigns y <= "00". Then
the value of 'y’ changes
ONLY if the conditions are
met for the input ‘w’.

= Note the order: w(1),
w(2), w(3). This
establishes a priority for
w(3) (last statement to
be executed).

» ‘7' starts with ‘1’, but if
the condition is met, it is
changed to ‘0",

Daniel Llamocca

library ;
use

entity my tprienc is
port (w: in

y: out

z: out
end my tprienc;

(3 downto O0);
(1 downto 0);

architecture bhv of my tprienc is

begin
process (w)
begin
y <= "00";
if w(l)
if w(2)
if w(3)

'l'" then
'l' then
'l' then

z <= '1";
if w = "0000" then
end process;
end bhv;

zZ <=

"01l"; end if;
"10"; end if;
"11"; end if;

'0'; end if;

OAKLAND
UNIVERSITY.

= JF Statement:

= Example: 4-bit comparator

library ;
use
use

all;
all;

entity my comp is
port (A,B: in

y: out
end my comp;

) ;

A

— > COMPA- y
-- unsigned #s RATOR |——

B A=B?

=

(3 downto 0);

architecture struct of my comp is : architecture behav of my comp is

begin
y <= 'l' when A = B else '0';
end struct;
Aj
o

Daniel Llamocca

— —

' begin
' process (a,b)
begin
if (A = B) then
y <= '1";
else
Y <= IOI;
end if;

end process;
' end behav;

OAKLAND
UNIVERSITY.

= JTF Statement:

= Example of ‘bad design’:
4-bits comparator, but the ‘else’ is omitted:

Warning! library ;
Ifazb—> y="? oee

use
Since we did not
specify what happens entity my comp is
when a # b, the port (A,B: in
synthesizer assumes y: out
that we want to keep P MY_comp;
the last value of 'y’

In the circuit, initially 'y’ begin
will be ‘0’. But: process (a,b)

lfa =l =1 e (A = B) then
forever. It is said that g <= '1';
the output has an end if: '

implicit memory since it end process;
‘remembers’ the end behav;
previous value of y.

This results in a faulty

comparator.
Daniel Llamocca

R

all;

e - [, Dot [— [

' B & |

all; -- unsigned #s

(3 downto 0) ;

architecture behav of my comp is

A3

sl > L

The synthesized circuit
would look like this:

D

-4

OAKLAND
UNIVERSITY.

N2

= RULES FOR A GOOD COMBINATORIAL & =l e b ani
DESIGN USING PROCESSES i

= Rule 1: EVERY input signal that is used within the process must
appear in the sensitivy list.

= Rule 2: ALL the possible Input/Output combinations must be
specified. Otherwise, we will find issues with implicit memory..

architecture behav of my comp is ;| g itecture behav of
begin Ebegin

_comp is

process (a,b) i process The case 'A #B'
begin i beg:l.n is never specified
if (A = B) then !
y <= 1 1 1 ,.
else !
y <= '0"; " end process;

end if; . end’ behav;
end process; !
end behav;

OAKLAND

UNIVERSITY.
Daniel Llamocca

= IF Statement. Example: Majority gate ’s RECUKLAODbH
Tri|:_>Ie Modular_Re_d_undancy: library ;
To improve reliability, a e ST
system is replicated three
times. The 3 generated entity my maj_gate is
outputs go into a majority- et (W R By
. . . port (A,B,C: in (N-1 downto 0);
voting system (majority gate) So et (N-1 downto 0) ;
to produce a single output. y err: out) ;

If at least two replicas end my maj_gate;
produce identical outputs —

P architecture bhv of my maj gate is
the majority gate selects that y_maj_g

) begin
output. If the three replicas process (A,B,C)
produce different results, the begin
majority gate asserts an error y_err <= '0";
flag (y error = ‘1") if (A = B) then £ <= A; end if;
= if (A =C) then £ <= A; end if;
N System N 3 = — . P F .
s 1_@,\ if (B = C) then £ <= B; end if;
if (A/=B) and (B/=C) and (A/=C) then
N f <= (others => '0');

System N‘ ; Majority N‘)
replica 2 gate y_err <= '1';
——> end if;
y error

N System . end process;
el end bhv;

> my maj gate.zip: my maj gate.vhd, QAKLAND
: — - - _ _ UNIVERSITY.
Daniel Llamocca tb my maj gate.vhd

» SEQUENTIAL STATEMENTS: % R E

CASE statement

It is used in multi-decision
cases when nested IF*%S
become complex.

All possible choices must be
included (see the keyword
when for every choice of the
‘selection signal’)

Last case: We must use when
others (even if all the 0/1s,
as std_logic has 9 possible
values). This also avoids
outputs with implicit memaory.

= Example: MUX 8-to-1 —

Daniel Llamocca

library ;
use all;

entity my mux8tol is
port (a,b,c,d,e,f,g,h: in
sS: in
y: out)
end my mux8tol;

architecture bhv of my mux8tol
begin
process (a,b,c,d,e,f,g,h,s)
begin
case s is

when "000" => y <= a;
when "001" => y <= b;
when "010" => y <= c;
when "011" => y <= d;
when "100" => y <= e;
when "101" => y <= f£;
when "110" => y <= g;

when others => y <= h;
end case;
end process;
end bhv;

.
4

(2 downto O0) ;

is

a

—10

b

|1

<

d_3 Ly

e

—14

f———5

e 16

h_y
1s
S

OAKLAND
UNIVERSITY.

= CASE Statement:

AY

&%@
%
)
\
J
]
)
:
X
_
2
)

= Example: MUX 7-to-1 22T /

= Note: y <="'-’(don't care).

use all;

entity my mux7tol is
port (a,b,c,d,e,f,g: in ;

This allows the synthesizer to S (2 downto 0);
optimize the circuit.

y: out) ;
end my mux7tol;

= If, however, we had used architecture bhv of my mux7tol is
when others => y <= g; begin B
The synthesizer would have process (a,b,c,d,e, f,g,s)
assigned the value ‘g’ for the Pegin

cases "110” and "111” (a case s is
slighty less optimal circuit). -

Daniel Llamocca

when
when

" 110"
"111"

when "000" => y <= a;
y <= b;
when "010" => y <= c;
when "011" => y <= d;
when "100" => y <= e;
when "101" => y <= £;
=> Y <= 9/ __ yhen others => y <= g;
=> ¥ <= 9/ 4hen "110" => y <= g;
when others => y <= '-';
end case;
end process; OAKLAND
end bhv; UNIVERSITY.

= CASE Statement:

= Example:

Binary to gray decoder

= It could also be
described using the
‘with-select’ statement

(no process)

b,b,b,

FRrHRErRROOOO
RFROORKRO
HORORORO

Daniel Llamocca

929190

P RPRRPRPROOODO

coRrKr|kRro

oORrRrRFROI©OKrREKEO

library
use

entity my gray2bin is

port (B:
G.

in
in

end my gray2bin;

architecture bhv

begin

process (B)

begin
case B
when
when
when
when
when
when
when
when

end bhv;

is

"00o0O"
"001"
"01l0"
"011"
"100"
"101"
"110"

of

a/\gl‘ . N el 4 e I & |

all;

(2 downto 0);
(2 downto 0));

my gray2bin is

QOO 0aaGaae

= "000";
= "001";
= "01l1";
= "010";
= "110";
= "111";
= "101";

others => G <= "100";
end case;
end process;

OAKLAND
UNIVERSITY.

CASE statement

Example:
7-segment decoder.

We use the don't care
value (*-") to optimize

;/\]gr A ol - - ' & B &)

library ;
use all;

entity my 7segdec is

port (bed: in (3 downto 0);
leds: out (6 downto 0));

end my 7segdec;

the circuit, since we onIy architecture bhv of my 7segdec is

expect inputs from SR
A\ " W " process (de)
0000” to “1111". begin
case bcd is -- abcdefg
Note that the CASE when "0000" => leds <= "1111110";

statement avoids the
output with implicit
memory, since the when
others clause makes
sure that the remaining
cases are assigned.

Daniel Llamocca

when "0001" => leds <= "0110000";
when "0010" => leds <= "1101101";
when "001l1l" => leds <= "1111001";
when "0100" => leds <= "0110011";
when "0101" => leds <= "1011011";
when "0110" => leds <= "1011111";
when "01l1l1l" => leds <= "1110000";
when "1000" => leds <= "1111111";
when "1001" => leds <= "1111011";

when others => leds <= "—-————-- "

end case;
end process; OAKLAND
end bhv; UNIVERSITY.

= CASE Statement: € RECKLAD

= Example: library ;
2-to-4 decoder with enable. YS€ all;

= Note how we combine IF entity my dec2tod is
with CASE for this decoder port (w: in (1 downto 0);
with enable. y: out (3 downto 0) ;

= The else cannot be and m diézi&-) ;
omitted, otherwise the y_ '

(nmpUt“m!haye““p"dt architecture bhv of my dec2to4 is
memory (it will be a LATCH) pegin

process (w,E)
W D begin
74) 4, y if E = "'1l" then
DECODER 74) case w is
E when "00" => y <= "0001";
—> when "01" => y <= "0010";
when "10" => y <= "0100";
when others => y <= "1000";
Example: 2-to-4 decoder (3 styles): end case:
> mydec2tod.zip: else y <= "0000";
end if;
mydec2to4d.vhd,
tb mydec2to4.vhd, e p?ocess;
mydec2tod.uct end bhv; OAKLAND

) UNIVERSITY.
Daniel Llamocca

» FOR-LOOP statement S RECKLAOb

= Very useful for
sequential circuit
description. But, it
can also be used
to describe some
combinatorial
circuits.

= Example: Sign-
extension (from 4
bits to 8 bits)

Daniel Llamocca

library ;
use all;

entity my signext is

port (A: in (3 downto 0);
y: out (7 downto 0));

end my signext;

architecture bhv of my signext is

begin bsb,b; b,
process (A) i@
begin
y (3 downto 0) <= A;
for i in 7 downto 4 loop sign-
v(i) <= A(3); extender
end loop;
end process;
end bhv; 8
b;bsbs;bsbsb,b b,
OAKLAND
UNIVERSITY.

FOR-LOOP statement

Example: Ones/zeros detector: It detects whether the mput contains only 0’s

or only 1’s.

Input length:
Parameter ‘N’

This is a rare instance
where using process
for combinational
circuits is the most
efficient description.

Variable inside a
process: it helps to
describe this circuit.
Depending on the
implementation, a
‘variable’ could be a
wire.

library 2

use all;

entity zeros ones _det is

generic (N: INTEGER:= 8);
port (in _data: in (N-1 downto O0);
all zeros, all ones: out) ;

end zeros_ones_det;

architecture bhv of zeros ones _det is
begin
process (in_data)
variable result and,
begin
result and:= 'l'; result or:
for i in in data'range loop
result_and result and and in_data(i);
result or:= result or or in data(i);
end loop;
all zeros <= not(result or);
all ones <= result and;

result_or: ;

'0';

end process;
end bhv; > zeros ones detector.zip:
—>o—all_zeros zeros_ones detector.vhd,
tb zeros ones detector.vhd, QOAKLAND
UNIVERSITY.
zeros_ones_detector.ucf

in_data

Daniel Llamocca

= ARITHMETIC EXPRESSIONS & RECKRLAb

= We can use the operators +, -, and * inside

behavioral processes. We can also use the comparison statements
(>I <I =I /=I >=I <=)'

= Example: Absolute value of A-B: |A-B|. A, B: unsigned numbers
library ;

use all;
= Input length: use all:

Parameter N.

= Note that the result entity my uabs_diff is
; generic (N: INTEGER:= 4);
|A-B| IS an

_ port (A,B: in (N-1 downto 0);
unsigned number R: out (N-1 downto 0)) ;
with N bits. end my uabs diff;

L "A,B _ : :
) architecture bhv of my uabs diff is
treated as unsigned begin o o
numbers process (A,B)

begin
if A >= B then
R <= A - B;

else
R <= B - A;
end if; > my uabs diff.zip:
end process; my uabs diff.vhd, QAKLAND

: UNIVERSITY.
Daniel Llamocca end bhv; tb my uabs diff.vhd

